function sha256(message) { // SHA-256 constants const K = [ 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2 ]; // Initial hash values let h0 = 0x6a09e667; let h1 = 0xbb67ae85; let h2 = 0x3c6ef372; let h3 = 0xa54ff53a; let h4 = 0x510e527f; let h5 = 0x9b05688c; let h6 = 0x1f83d9ab; let h7 = 0x5be0cd19; // Convert string to UTF-8 bytes manually const msgBytes = stringToUtf8Bytes(message); const msgLength = msgBytes.length; const bitLength = msgLength * 8; // Calculate padding // Message + 1 bit (0x80) + padding zeros + 8 bytes for length = multiple of 64 bytes const totalBitsNeeded = bitLength + 1 + 64; // message bits + padding bit + 64-bit length const totalBytesNeeded = Math.ceil(totalBitsNeeded / 8); const paddedLength = Math.ceil(totalBytesNeeded / 64) * 64; // Round up to multiple of 64 const paddedMsg = new Array(paddedLength).fill(0); // Copy original message for (let i = 0; i < msgLength; i++) { paddedMsg[i] = msgBytes[i]; } // Add padding bit (0x80 = 10000000 in binary) paddedMsg[msgLength] = 0x80; // Add length as 64-bit big-endian integer at the end // JavaScript numbers are not precise enough for 64-bit integers, so we handle high/low separately const highBits = Math.floor(bitLength / 0x100000000); const lowBits = bitLength % 0x100000000; // Write 64-bit length in big-endian format paddedMsg[paddedLength - 8] = (highBits >>> 24) & 0xFF; paddedMsg[paddedLength - 7] = (highBits >>> 16) & 0xFF; paddedMsg[paddedLength - 6] = (highBits >>> 8) & 0xFF; paddedMsg[paddedLength - 5] = highBits & 0xFF; paddedMsg[paddedLength - 4] = (lowBits >>> 24) & 0xFF; paddedMsg[paddedLength - 3] = (lowBits >>> 16) & 0xFF; paddedMsg[paddedLength - 2] = (lowBits >>> 8) & 0xFF; paddedMsg[paddedLength - 1] = lowBits & 0xFF; // Process message in 512-bit (64-byte) chunks for (let chunk = 0; chunk < paddedLength; chunk += 64) { const w = new Array(64); // Break chunk into sixteen 32-bit big-endian words for (let i = 0; i < 16; i++) { const offset = chunk + i * 4; w[i] = (paddedMsg[offset] << 24) | (paddedMsg[offset + 1] << 16) | (paddedMsg[offset + 2] << 8) | paddedMsg[offset + 3]; // Ensure unsigned 32-bit w[i] = w[i] >>> 0; } // Extend the sixteen 32-bit words into sixty-four 32-bit words for (let i = 16; i < 64; i++) { const s0 = rightRotate(w[i - 15], 7) ^ rightRotate(w[i - 15], 18) ^ (w[i - 15] >>> 3); const s1 = rightRotate(w[i - 2], 17) ^ rightRotate(w[i - 2], 19) ^ (w[i - 2] >>> 10); w[i] = (w[i - 16] + s0 + w[i - 7] + s1) >>> 0; } // Initialize working variables for this chunk let a = h0, b = h1, c = h2, d = h3, e = h4, f = h5, g = h6, h = h7; // Main loop for (let i = 0; i < 64; i++) { const S1 = rightRotate(e, 6) ^ rightRotate(e, 11) ^ rightRotate(e, 25); const ch = (e & f) ^ (~e & g); const temp1 = (h + S1 + ch + K[i] + w[i]) >>> 0; const S0 = rightRotate(a, 2) ^ rightRotate(a, 13) ^ rightRotate(a, 22); const maj = (a & b) ^ (a & c) ^ (b & c); const temp2 = (S0 + maj) >>> 0; h = g; g = f; f = e; e = (d + temp1) >>> 0; d = c; c = b; b = a; a = (temp1 + temp2) >>> 0; } // Add this chunk's hash to result so far h0 = (h0 + a) >>> 0; h1 = (h1 + b) >>> 0; h2 = (h2 + c) >>> 0; h3 = (h3 + d) >>> 0; h4 = (h4 + e) >>> 0; h5 = (h5 + f) >>> 0; h6 = (h6 + g) >>> 0; h7 = (h7 + h) >>> 0; } // Produce the final hash value as a hex string return [h0, h1, h2, h3, h4, h5, h6, h7] .map(h => h.toString(16).padStart(8, '0')) .join(''); } function stringToUtf8Bytes(str) { const bytes = []; for (let i = 0; i < str.length; i++) { let code = str.charCodeAt(i); if (code < 0x80) { // 1-byte character (ASCII) bytes.push(code); } else if (code < 0x800) { // 2-byte character bytes.push(0xC0 | (code >> 6)); bytes.push(0x80 | (code & 0x3F)); } else if (code < 0xD800 || code > 0xDFFF) { // 3-byte character (not surrogate) bytes.push(0xE0 | (code >> 12)); bytes.push(0x80 | ((code >> 6) & 0x3F)); bytes.push(0x80 | (code & 0x3F)); } else { // 4-byte character (surrogate pair) i++; // Move to next character const code2 = str.charCodeAt(i); const codePoint = 0x10000 + (((code & 0x3FF) << 10) | (code2 & 0x3FF)); bytes.push(0xF0 | (codePoint >> 18)); bytes.push(0x80 | ((codePoint >> 12) & 0x3F)); bytes.push(0x80 | ((codePoint >> 6) & 0x3F)); bytes.push(0x80 | (codePoint & 0x3F)); } } return bytes; } function rightRotate(value, amount) { return ((value >>> amount) | (value << (32 - amount))) >>> 0; } // Test function to verify implementation // function testSHA256() { // const tests = [ // { // input: "", // expected: // "e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855", // }, // { // input: "Hello World", // expected: // "a591a6d40bf420404a011733cfb7b190d62c65bf0bcda32b57b277d9ad9f146e", // }, // { // input: "abc", // expected: // "ba7816bf8f01cfea414140de5dae2223b00361a396177a9cb410ff61f20015ad", // }, // { // input: "The quick brown fox jumps over the lazy dog", // expected: // "d7a8fbb307d7809469ca9abcb0082e4f8d5651e46d3cdb762d02d0bf37c9e592", // }, // ]; // console.log("Running SHA-256 tests:"); // tests.forEach((test, i) => { // const result = Crypto.sha256(test.input); // const passed = result === test.expected; // console.log(`Test ${i + 1}: ${passed ? "PASS" : "FAIL"}`); // if (!passed) { // console.log(` Input: "${test.input}"`); // console.log(` Expected: ${test.expected}`); // console.log(` Got: ${result}`); // } // }); // }